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1. Introduction

Several algorithms have been described in the literature for the numerical representation of the

inviscid flux in the Navier-Stokes equations. The more recent of these schemes have their un-

derlying basis in either mathematical (for example TVD schemes [1]) or physical (for example

flux-splitting [2, 3]) analyses. All of these modern methods employ upwinding in one form or

another to obtain algorithms possessing better dissipation characteristics, higher stability bounds

and increased numerical efficiency [4, 5]. This inherently dissipative nature of upwinded schemes

is beneficial at or near shock waves where the inviscid fluxes dictate finite jumps in flow variables.

However, typical viscous supersonic flows about bodies display steep gradients not only in shock

regions but also in the boundary layers. The dissipative characteristics of upwind schemes in these

latter regions is a drawback since the numerical dissipation may be comparable to or overwhelm

the viscous terms. This can often have detrimental consequences on the prediction of heat transfer

rates [6].

Following the approach of several authors [7, 8] upwind schemes may be classified according

to the Riemann solver used to evaluate the fluxes at the cell faces and the mechanism through

which higher order spatial accuracy is obtained - non-MUSCL or MUSCL. Some examples of

schemes obtaining higher order accuracy with non-MUSCL al)l)roaches are the "Symmetric" TVD

scheme of Yee [9, 10] and the "rpwind" TVD scheme of Ilarten and Yee [10, 11] where the quotes

indicate the fact these words (o not retain the traditional centered or upwind meanings because

of the presence of flux functions and slope limiters.

The focus of the present research is on schemes that obtain higher order accuracy through, the

M IrSCL approach of van Leer [121. Specifically, we study the performance of the flux vector split

inet hods of Mac(ormack an( Candler [6] (to be abbreviated henceforth as the MC method) and

van Leer [3] (abbreviated vL) and the flux difference split method of Roe [13]. The distinction

between flux-l ' tor anid fluy-dijf(r' splitting may be based upon tihe 1110del used to derive tile

basic interaction between neigh boring cells. When the interaction hetween neighboring cells is

mod eled wi ti i nit a-aml) litui de waves (the llieinaim ap)roach), the sclemie is called flux-differenmce



splitting; when accomplished through the mixing of pseudo-particles (the Boltzmann approach)

the method is called flux-vector splitting [3].

The original Steger-Warming flux-vector split method [2] (often called the beam scheme)

exploits the homogeniety of the inviscid flux vector to split the flux into positive and negative

components depending upon the sign of the local eigenvalues. Since the mass flux for this scheme

is not continuous where the eigenvalues change sign, "glitches" are often observed at sonic and

stagnation points. This method was proven to be excessively dissipative in the boundary layers by

MacCormack and Candler [6] who suggest relatively simple changes (outlined later) to eliminate

numerical diffusion: these modifications give rise to the MC method. Reported applications of the

original Steger-Warming algorithm include inviscid flows past airfoils [2] and cylinders [14]. The

MC scheme has previously been applied for flat plate boundary layer flows, flows past compression

ramps, blunt body flows [6], viscous real gas flows past sphere-cones [151, Type III+ and Type IV

viscous shock-shock interactions [16].

Unlike Steger Warming splitting, van Leer's formula exhibits flux continuity across eigenvalue

sign changes. Some improvement is obtained in shock capture capability over the Steger Warm-

ing method [17] . Applications with van Leer's scheme include inviscid subsonic and transonic

flows over airfoils [18], viscous shock-induced separated flows [19], flows over delta wings [20]

and recently a Type III+ interaction at Mach 8 [21] with and without a turbulence model. A

comparison of the van Leer and the original Steger-Warming scheme for some Euler flows may be

found in Anderson et al. [17].

Roe's flux-difference split method [13] is based upon accurate prediction of wave interactions

between interfaces through an approximate (linearized) equation. This approach has been demon-

strated to reduce the numerical dissipation [22] and has subsequently been extended to reduce

grid-dependence [23] common to methods based on 1-D analysis. One drawback of this algorithm

is the possible violation of the entropy condition, necessitating the employment of appropriate en-

tropy correction factors. One approach is described in considerable detail in Chapter 2. Roe's flux

difference split method has been applied in recent years for viscous and inviscid conical flow [13],

nozzle flow and shock reflection [24].
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The popularity of the above three flux split methods in the computation of high speed flows

is likely to increase especially with their extensions to include high temperature effects by Liu

and Vinokur [251, Grossman and Cinnella [26, 27] and Shuen et al. [28]. A comparison of the

relative merits of each of these schemes has been performed either on inviscid flows [17, 8] or

on simple viscous flows [22, 29], The former type of comparison focuses exclusively upon shock

capture capability while the latter is restricted to relatively simple flows (e.g., flat plate boundary

layers). An overall assessment of these methods based upon the studies available in the literature

is further complicated by the ambiguity in specific implementation.

We perform a detailed analysis, with grid resolution study, of the prediction capabilities of

these three algorithms on two classic 2-D viscous laminar problems with specific emphasis in

the prediction of heat trantsfer rates. The implementation of each algorithm is determined for

our purposes to be the one most commonly utilized as observed in the literature. The choice of

problems and flow parameters is dictated by the need to simulate features generic to a wide range

of complex flows for which reliable experimental data in the form of surface pressure and heat

transfer are available.

" Mach 16 Blunt body flow: This is a classic problem typified by a simple geometry and

flow features and the availability of a relatively accurate theoretical value of stagnation

heat transfer [301. Despite the relative simplicity of the flowfield, several algorithms have

displayed difficulties in heat transfer prediction. These difficulties generally manifest them-

selves as the so-called "carbuncle" or "bulge" phenomenon [31. 32, 33] and may be the result

of the singularity of the eigenvalues across the entire length of the line of symmetry.

" Mach 14 flow past a compression ramp: This type of flow exists generically in several

practical applications (e.g., inlets) and is typical of shock-wave boundary layer interactions

(Fig. 1). The parameters chosen duplicate one of the experiments of Holden and Moselle [34]

corresponding to a 24' ramp at Mach 14.1. The resultant flowfield is known to exhibit a

large region of recirculation [35]. Although some evidence exists to suggest that 3-D effects

may be important [36], no effort is made to resolve this issue in the present work.

3



In each instance, a sequence of grids is employed to obtain grid resolution studies. The finest

grids utilized are presented in Fig. 2. Further quantitative details are presented and discussed

with the results.
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(a) Blunt body flow

(b) Corner flow

Figure 2: Grids employed
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2. Theoretical Model

The 2-D Navier Stokes equations in strong conservation form are solved in the transformed ( , 7)

coordinates:
- + OG (2.1)

19t 197

where U is the solution vector of conserved variables ({p, pu, pv, pe}[J) with p denoting density, u

and v the Cartesian components of velocity, e the total energy per unit mass (= ej + 0.5(u 2 + v2 ))

and ei the internal energy per unit mass (= CDT) where C, is the specific heat at constant

volume and T is the static temperature. The flux vectors, F and d, include the full viscous and

inviscid terms, (x,y) and q!(x,y) are the transformed variables. For the configurations under

consideration, the coordinate lines are in the generally circumferential or streamwise direction

while the q lines are radial or body-normal. The density, static pressure p and temperature

are related through the equation of state p = pRT where R is the gas constant. The molecular

viscosity p is approximated by Sutherland's law and the molecular Prandtl number Pr is assumed

to be 0.73 (air).

Equation 2.1 may be interpreted as describing the balance of mass, momentum and energy

over an arbitrary control volume [18]. Numerical time integration is achieved with a residual

driven line Gauss-Seidel relaxation scheme as described in the works of MacCormack [37] and

Candler [38]. With first-order backward Euler time discretization and linearization of the fluxes

in time, the discretized equation may be written in the form:

{NUMERICS} W = PHYSICS (2.2)

where PHYSICS represents the residual and NUMERICS contains the driving terms and bU rep-

resents the change in the solution vector at each time step. The full Navier-Stokes equations are

utilized in computing the residual with the appropriate upwind model for the inviscid terms and

centered evaluation of the viscous terms. One advantage of the above methodology is that approx-

imations may be utilized in the NUMERICS portion of the code without affecting the accuracy

of the converged result. In fact, Liou and van Leer [24] point out that even if the PHYSICS

7



term is evaluated with other methods (such as van Leer's splitting or Roe's upwinding), the use

of Steger Warming splitting in evaluating the NUMERICS portion leads to robust codes for the

Newton linearization procedure. The implicit operator in this research therefore utilizes the Ste-

ger Warming Jacobians to obtain strong diagonal dominance. Further, for simplicity the viscous

Jacobians in the driving NUMERICS portion are computed with the thin layer approximation.

When solved with the Gauss-Seidel line relaxation procedure, Eqn. 2.2 represents a block

tridiagonal system. For transonic and supersonic flows, line relaxation methods are superior to

approximate factorization methods in convergence rate which amply compensates for the larger

computation required per iteration [39]. The line Gauss-Seidel algorithm is also unconditionally

stable in the linear analysis and is known to be relatively insensitive to the choice of time increment

per iteration.

For most computations, the automatic CFL number adjustment algorithm of MacCormack [40]

is utilized. In this, the allowable time step is automatically permitted to double every nit iterations

from an initial value (typically small - 0.01). After the explicit part of each iteration (the first

stage if a two-stage method is used), the changes in the solution are adjusted so that the maximum

relative change in density at any point due to the present iteration is always less than a fixed

value (bP,,av say) and the maximum relative decrease in temperature is also less than another

fixed value (bTni, say). This adjustment involves the division of the residual at each point

by a fixed number determined such that the above conditions are satisfied. In effect, this cuts

the explicit allowable timestep by cutting the CFL. Although MacCormack obtained arbitrary

increases in the CFL number, for some of the current computations, the residuals as well as CFL

numbers asymptote to limit cycles. In such instances, the maximum CFL is restricted to such

a value that the CFL number remains stable and the solution residual converges. This typically

eliminates the high frequency oscillations in the residual cycles. Also, although MacCormack

used maximum allowable relative change values (bp/Plmax or -bT/TJmax) of 0.5, in the present

instance, especially for finer grids, values of 0.01 to 0.05 were used.

A brief description of each algorithm is presented with reference to the flux evaluation (G)at

a j + 1 surface in the present cell centered finite volume formulation. Denoting the derivatives
2
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of the transformed coordinates with respect to the physical coordinates as , etc., the flux at

this surface in generalized coordinates is:

=J 1  + (2.3)

where J is the Jacobian, F and G are the fluxes expressed in Cartesian coordinates and include

viscous and inviscid components:

T = F + F, and G= G+G, (2.4)

with F and G representing Cartesian inviscid fluxes and F, and G, the viscous fluxes respectively.

The viscous fluxes are evaluated in a centered fashion and will not be discussed extensively. The

vectors grad( )/J and grad(77)/J represent the directed areas of cell interfaces in the , rq and

( directions and J is the inverse cell volume. Since the extension to general coordinates is

straightforward as described by Anderson et al. [17], the following discussion focuses only on

the inviscid Cartesian flux vector G.

At each interface, the state of the flow is described by two vectors of conserved variables, UL

and UR on either side of the interface. These vectors are obtained from the known values at the

cell centers with the MUSCL approach in conjunction with a limiter as described below.

2.1 MacCormack and Candler Flux-Vector Split Algorithm

In flux vector splitting, the inviscid flux is split into positive and negative components for appro-

priate upwind differencing:

G= U + G(Uj+) (2.5)

We describe first the original Steger Warming method and then the MacCormack and Candler

scheme. In the Steger Warming approach [2] (abbreviated OSW), since the inviscid fluxes are

first order homogeneous and hyperbolic, the flux Jacobian B (B = aG/e9U, G = BU) may be

written as:

B = Q-'AQ = Q-'(A+ + A-)Q = B + + B- (2.6)

9



where A is a diagonal matrix consisting of the eigenvalues of B (A = diag {v, v + c, v - c}) and

A+ and A- denote the splitting of the eigenvalues into positive and negative components. For

convenience, the matrix Q may be written as [38]:

Q = CS (2.7)

where S = -, V is the vector of nonconserved variables {p, u, v, p} and C diagonalizes the flux

vector G written in terms of V. At a face j + 1/2 therefore, the inviscid original Steger Warming

flux (Gosw) may be written as:

GOsw,J+L = B+UL + B7(IR (2.8)
2 J +1

For second order accuracy, the vectors of conserved variables, ULand UR, are obtained at the

cell interfaces by extrapolation to the cell surface with the MUSCL approach of van Leer [12] in

conjunction with the minmod limiter. Denoting the vector of extrapolated quantities as W:

WR1 = WJ+I- Aj+ (2.9)
j+22 2+

w = wi + Aj+ (2.10)

where:

Ai+i = minmod(Aj+., Ai_1 ) (2.11)

and AJ+I = WR - WL. Several choices of W are possible, e.g., the vector of conserved variables

(W = U) or characteristic variables. For the present method we choose to extrapolate the

primitive variables (W = {p,u,v,p}) and U is extracted from the extrapolated W. With the

addition of the minmod limiter, the algorithm reverts to first order accuracy at shocks in order

to preserve monotonicity within the solution.

The formula of Eqn. 2.8 exhibits two major difficulties. First, it may introduce discontinuities

in the solution at sonic and stagnation points where the eigenvalues change sign and some form

of eigenvalue smoothing may be necessary. A more serious flaw in Eqn. 2.8 is that it introduces

excessive numerical damping in the boundary layers. This damping significantly deterioriates

10



the prediction accuracy of surface quantities of engineering interest. With direct algebraic ma-

nipulation of the normal flux near a surface under boundary layer conditions, MacCormack and

Candler [6] proved that the Steger Warming procedure introduces artificial tangential momentum

exchange between adjacent cells in the boundary layer solely due to the splitting of the inviscid

fluxes. This diffusive term is proportional to the quantity:

-p. (u,,j+i - U,,j) (2.12)

where c is the speed of sound and - is the ratio of specific heats. Since it is of order Ay, it can

obtain unacceptably high values in the boundary layer. In addition, there is also a large numerical

exchange of kinetic energy of the order:

-. 5j (ai,,,l - a,,) (2.13)

between adjacent points in the boundary layer where a is the kinetic energy. They recommended

that both B+! and B7+. be evaluated at the same point. Two choices are obvious: 1) evaluate

B at j + 1 by averaging the conserved variables between points j and j + 1, or 2) evaluate B

at j and j + 1 respectively in successive iterations. No significant difference is observed between

results obtained with either approach. In the present calculations, the first approach is utilized

exclusively. The inviscid MacCormack and Candler flux (GMC) reads therefore:

GMc,,+i = B eL + B7 IUR
2 1+2 -1+2

= [ S-1C-1IA+ICS],, UL + [S-1C-1IA-JCS],_ ( R (2.14)

where once again, UL and UR are evaluated with the MUSCL approximation (Eqns 2.9, 2.10

and 2.11). This modification, however, introduces an artificial pressure gradient. This error

comprised the terms:

2 Pi i,j+i - ui,j,) + (Vi +1 - viX (2.15)

and may, therefore, be expected to dominate only in the close vicinity of the boundary where

high velocity gradients exist. MacCormack and Candler [6] treated this problem at the expense

11



of reintroducing some of the diffusiveness of the original Steger Warming scheme by further

modifying the component S for the matrix Q in Eqn. 2.7 such that its last row is evaluated as

in the original formulation. Subsequently, MacCormack I suggested that since this error arises

due to the multiplication of the last row of the matrix S and the column vector U, this product

be explicitly replaced with the extrapolated pressure at the interface. This latter approach is

followed in the present computations.

The MC method was developed for application only in the boundary layers and in fact leads

to instability when applied in regions of discontinuities such as shock waves. As a result, it is

necessary to revert to the original Steger Warming scheme near shocks. This is achieved in a

smooth and systematic manner by defining the parameter XI:

XI = (2.16)1 + PR x PR

PR = IPi,+I -Pij (2.17)
min(pij+ 1, Pi,j)

and defining the flux at the j + 1/2 face as:

Gj+1 = xGMc,t+i + (1 - xl)Gosw, (2.18)

2.2 van Leer's Flux-Vector Split Algorithm

The functional form of the van Leer scheme [3] is similar to the Steger Warming algorithm. For

supersonic flow:

G+ =G; G-=O for MY> (2.19)

G+ =O; G-=G for M,<-l (2.20)

where My is the local Mach number normal to the face j + 1. For subsonic flow, G was revised by

van Leer to avoid the discontinuity exhibited across sonic lines by the Steger Warming algorithm.

'Private Communication, June, 1990
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For IMrI < 1 and c representing the local speed of sound [17]:

G = gm -) 2 (2.21)

genergy

where:

a- pc(M .± 1)2 (2.22)

gnef9! = f!. (2.23)
4((_ _ ((-1) V)2  U21

This scheme also obtains second order accuracy with the MUSCL approach (Eqns. 2.9 through 2.11).

2.3 Roe's Flux-Difference Split Algorithm

The formula for this scheme reads [13]:

2+ =

where () indicates evaluation at the Roe averaged state between UL and UR[13]. This scheme

extends to second order accuracy through the MUSCL approach (Eqns. 2.9 and 2.10) with W =

{ p, u, v,p}. In contrast to the above flux vector split algorithms, Roe's scheme may violate the

entropy condition when the eigenvalues at the Roe averaged state vanish. Following Harten [41]

the eigenvalues JAI of JAI are modified when they are below some small threshold 6:

AI = IA 2  621 IA < 6 (2.25)26

wher, t!e val,:e of 6 is taken as the following [10]:

b =~ +i- + - (2.26)1 3+]

13



The value of 6 utilized typically in the range 0.05 to 0.1. For the flow past the compression ramp,

only the two eigenvalues of the form u + c and u - c (corresponding to the genuinely nonlinear

eigenvectors) are cutoff in each direction. For blunt body flows, however, it is necessary also to

apply the cutoff algorithm to the eigenvalue of the form u (corresponding to the linearly degenerate

eigenvector) in the streamwise (body-tangential or ) direction for stability purposes [42]. Further,

the value of the cutoff parameter, i also needs to be increased to prevent the development of

anomalous solutions as discussed later. This can however lead to excessive dissipation. To prevent

this for both the blunt body and the corner flow, an anisotropic cutoff formula described by

Muller [43] is employed in the streamwise direction:

31

6= iJ-A() I + ( A7)] (2.27)

where A(k) = tl .tkl + cl kI. Further discussion on the choice of the parameter 6 is provided with

the results.

14



3. Boundary Conditions and Numerical Details

For each flow, the boundaries may be categorized into one of the following:

" "Inflow/Farfield boundary:" The flow vector {p, pu, pv,pe} is specified corresponding to the

known values.

* Solid boundary: The velocity vector and the normal pressure gradient are assumed zero and

a fixed surface temperature is specified i.e.:

pi= 0; T = T,; 5- 0 (3.1)

where i" is the velocity vector and the subscript w refers to wall conditions. The values of

Tt are provided with the results.

e Outflow boundaries: The flow at these boundaries is assumed predominantly supersonic.

The zero gradient extrapolation condition (8/8 = 0) is applied.

The boundary conditions for the implicit portion of the algorithm are described in Gaitonde and

Shang [16].

Convergence is determined for all computations by monitoring several quantities. The global

residual, defined as:

IIG.R.II= 1 JL( ) (3.2)
IIGR.I-(IL)(JL) ==l=\--]

is one measure. In Eqn. 3.2, k denotes the kth equation (1=continuity, 2,3=momentum and

4=energy) on an IL x JL computational mesh and Rk is the residual:

oR k ak _ k3)Rk (3.3)
aOt O a77

For plotting purposes, these values are normalized by the value of IIG.R.I obtained after the

first iteration. With this criterion, convergence is assumed after IIG.R.I drops 8 or more orders

of magnitude. After this, the surface pressure and heat transfer are monitored over about one
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characteristic time (T, = L/U, where U,, is the freestream velocity and L is a macroscopic length

scale, the diameter of the cylinder for the blunt body flow or the length from the leading edge

to the corner for the corner flow). In addition, the integrated root mean square (RMS) pressure

and heat transfer values over the entire surface are also nio-tored. Both must remain constant

at convergence. With p denoting pressure the RMS surface pressure may be written as:

RMSP= I L Pijs ce (3.4)
IL __ NO~

With Q denoting surface heat transfer, the RMS Surface Heat transfer is:

R S 1 IL )
IL Z(Qij=.urface)2 (3.5)

i1
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4. Blunt Body Flow

4.1 Flow Parameters and Grid Details

The parameters for this flow are:

M,, = 16.34

Cylinder Radius = 1.5 in

To, = 93.93R

po = 0.01203psia

Reynolds Number = 1.2 x 106per foot

Twall = 530R

This case represents a low-enthalpy flow for which previous computations validate the perfect

gas approximation [44]). Three grids (denoted 1, 2 and 3 respectively) are developed with the

characteristics described in Table 4.1. In this table, the number of flow points listed in each

direction, IL x JL, do not include shadow cells employed on the boundary. Guidelines for grid

resolution are taken from the work of Klopfer and Yee [45] who recommend a surface cell Reynolds

number (Re,) of roughly 3 for heat transfer calculations (fixed-wall temperature) and of the order

of 10 for adiabatic wall conditions for their TVD scheme. They also indicate that heat transfer

rates are not particularly sensitive to the circumferential spacing. The most refined grid for

each computation satisfies these criteria and is generated with a combination of exponentially

stretched and uniform spacings (Fig. 2(a)). From this complete grid, subgrids 1 and 2 are extracted

systematically to provide grid refinement studies. Note that the surface cell Reynolds numbers

presented in Table 4.1 are based on the half-cell heights of the first cell on the body.
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Table 4.1: Blunt body grid details

Grid IL x JL Recimin Reclmax Rec.,, A~8Imr, A01... A01., v clay

1 19 x 17 19.4 125.3 51.5 1.10 10.5 6.6 1.98

2 39 x 35 8.1 51.6 20.6 0.51 5.3 3.4 1.41

3 79 x 71 3.7 24.2 9.6 0.25 2.5 1.7 1.18

Legend: IL - Points in direction JL - Points in q direction

Re, - Surface mesh Reynolds number AO - Angular spacing (deg)

c - Stretch factor at surface

Subscripts: av - average min - minimum

max - maximum

4.2 Results

Computations with each of the methods are compared with experimental values published by

lolden et al. [46]. Results from the MC scheme are displayed in Fig. 3 where the unnormalized

computed surface pressure is plotted versus 0, the angle measured in degrees along the cylinder

with reference to the stagnation streamline, 6 = 0. Not much variation with mesh resolution

is observed in the quantitative pressure results. The experimental measured pressure values

display significant scatter and are consistently lower than the computations. A similar observation

was made by Prabhu et al.. The computed stagnation point pressure compales very well with

the results obtained with the Rayleigh supersonic pitot pressure formula [47], 4.20psia, and the

computed results of Prabhu et al. [44]. Fig. 4 shows the unnormalized computed heat transfer (in

Btu/f 2 s) versus 0. Overall, the agreement with the experimental values is excellent even with

the coarsest mesh computed which has a very high surface cell Reynolds number (Table 4.1). The

stagnation heat transfer agrees very well with the Fay and Riddell value (as quoted by Prabhu et

al.) of 49.5 Btu/f 2 s. It should be noted that the MC method, proposed as a correction to the
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Figure 3: Surface pressure in Mach 16 flow past a blunt body with the MC

scheme
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original Steger Warming (OSW) method, is a tremendous improvement. Results from the OSW

method (not shown for the purposes of brevity) indicate an overprediction of heat transfer of 500%,

400% and 250%, respectively, over the Fay and Riddell value on Grids 1, 2 and 3 respectively.

One drawback of the MC algorithm over the OSW algorithm is the tendency to develop the

anomalous "carbuncle" solutions referred to earlier. The OSW algorithm does not display any

such tendency for the grids computed. Since the MC algorithm is supposed to revert to the

OSW method at shocks, this is more appropriately characterized as a drawback of the switching

algorithm utilized in the present research. Indeed, for the results displayed here, the carbuncle

problem was eliminated by explicitly applying the OSW scheme at a few points on either side

of the shock, i.e., overriding the pressure-based switching mechanism described earlier. Fig. 5

exhibits the Mach number variation versus distance (measured relative to the cylinder center)

and normalized by the cylinder radius along the stagnation streamline. For each mesh, the shock

is captured with at most two points inside. The shock standoff distance, defined with reference

to the location of the sonic point, is uniform with mesh resolution (AIR -, 0.4). These results

are in close agreement with the results of Prabhu et al. and reflect well upon the shock capture

capability of the OSW method.

For the sake of completeness, we show the computed Mach, pressure and temperature contours

in Fig. 6. With the strategy of explicit application of the OSW scheme in the vicinity of the shock,

no evidence of the carbuncle is visible.

Fig. 7 shows the surface pressure prediction with the van Leer method. As for the MC results,

the pressure prediction does not change much with grid resolution and, in fact the pressure over

the entire surface of the cylinder differs only by an insignificant amount from that predicted by

the MC method. In sharp contrast, grid resolution has a drastic effect upon the heat transfer

prediction (Fig. 8). Although all the heat transfer profiles are smooth, results on the coarse mesh

overpredict the heat transfer by a large amount over the entire surface of the cylinder (120% over

the Fay and Riddell value at the stagnation point). The results improve significantly with grid

resolution with 52% overprediction of stagnation heat transfer on Grid 2 and a relatively small 15%

overprediction on Grid 3. These results indicate the extreme diffusiveness of the van Leer scheme,
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a result previously observed by other researchers on other geometries and flow parameters [22].

Despite the significant inaccuracies in the heat transfer prediction, the method exhibits excellent

shock-capture capability (Fig. 9). For all mesh resolutions, the shock is not only captured within

two zones along the centerline but also, the shock standoff for each grid is within one grid point.

It is noted that none of these calculations with van Leer's scheme tended to exhibit any tendency

towards the development of the anomalous "carbuncle" solution. The computed Mach, pressure

and temperature contours are presented in Fig. 10.

An attempt was made to improve the predictions of heat transfer by investigating different

choices of the extrapolated vector W (see Section 2). As mentioned earlier, all of the calculations

described in this work utilize W = {p,u,v,p} for the extrapolation procedure to obtain the

L and R states. The effect of utilizing W = {p,pu,pv,p} and the set of conserved variables

W = {p, pu, pv, pe} was investigated for the van Leer scheme on Grid 2. It was found that neither

of these had any significant influence on the accuracy of the final result (Fig. 11) and, in fact, the

rate of convergence was found to be adversely affected.

Turning to the Roe schem, (Fig. 12), once again the computation of the surface pressure

displays a remarkable insensitivity to grid resolution. This is perhaps a result of the fact that the

surface pressure is a mechanical quantity, dictated mainly by the shock strength and shape which

in turn is rather accurately predicted by all the inviscid discretization methods at each level of

mesh refinement. In this regard, the fact that the mesh is well aligned with the shock wave is

an important factor. For Grids 2 and 3, several values of the cutoff parameter 6 were utilized for

reasons outlined below. The effect of this parameter on the computed surface pressure is clearly

negligible.

Fig. 13 exhibits the surface heat transfer comparison with experiment. For Grid 1, the value

of i used was quite small (0.05). No tendency toward the development of the carbuncle was

observed and the results are quite accurate in similarity with the predictions with the MC scheme.

As mentioned previously, Roe's scheme exhibits a tendency to display the carbuncle for this

configuration as observed previously by Peery et al. [31] and Liou et al. [33]. In the present

instance, this tendency is suppressed by increasing the value of the constant i in the entropy
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correction formula (Eqns. 2.26 and 2.27). For Grid 1, we believe the truncation error provided

by the coarseness of the mesh is possibly sufficient. For Grid 2, small values tended to give the

bulge solution clearly visible in the Mach contours. At about 6 = 0.2, the visible evidence of the

bulge in the Mach contours disappeared. However, a small dip remained in the surface quantities

of interest in the vicinity of the stagnation point. Upon increasing 6 to 0.3, all evidence of the

carbuncle disappeared. As shown in Fig. 13, further increase to 0.4 did not have any significant

effect upon the flowfield. Although a rigorous examination of the minimum value allowable for

an anomaly free solution was not made, for Grid 3, the value of 6 was increased in increments of

0.1 until all evidence of anomaly in contour plots of the Mach number, pressure and temperature

disappeared. A minimum value of 0.5 was required. Even then, a small dip persisted in the

heat transfer computation in the vicinity of the stagnation point (Fig. 13). Further increase

upto b = 0.8 did not remove this anomaly. The shock standoff distance and shock capture

capability (Fig. 14) are similar to that exhibited by the van Leer scheme. In general, the shock

is captured within at most two points even with the highest value of 6 utilized. The computed

flowfield exhibits no evidence of the carbuncle in the flow contours (Fig. 15). Further, the standoff

distance (roughly 40% of the radius) is quite accurate and invariant with grid resolution. On all

schemes considered, this reflects very well upon the computed density ratio across the bow shock

and overall low conservation errors.

The excellent agreement observed for heat transfer results with the MC and Roe scheme may

be fortuitous. Further numerical studies are necessary at different Mach and Reynolds number

conditions to validate the conclusions derived in the previous discussion.
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5. Corner Flow

5.1 Flow Parameters and Grid Details

The parameters for this flow, chosen to simulate the experimental evidence of Holden et al. [34]),

are:

M,, = 14.1

Ramp Angle = 240

T,, = 130.8R

pc, = 0.21

Reynolds Number = 72000per foot

Twall = 535R

Two types of grid are considered for this study, Grids 1, 2 and 3 are are simply sheared (Fig. 2(bl))

exponentially stretched on either side of the interaction and also in the surface normal direc-

tion. Since recent research efforts have highlighted the importance of resolving the leading edge

shock [36], Grid 4 utilizes 209 x 59 points providing better resolution in the vertical direction

at the leading edge by suitable redefinition of the domain at the leading edge (Fig. 2(b2)). The

horizontal spacing over the solid surface is the same as for Grid 3. The characteristics of the grids

utilized are presented in Table 5.1.

5.2 Results

Fig. 16 (a), (b) and (c) display the comparison of pressure coefficient (defined as 2 P ,) with
PU 0 0

the MC, van Leer and Roe schemes, respectively. The abscissa is the strearnwise distance nor-

malized by the distance from the leading edge to the corner (L = 1.44ft). On the coarse mesh,

all methods predict the start of pressure rise at an X/L value of 1.0, significantly upstream of the
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Table 5.1: Corner grid details

Grid IL x JL Recla, AXmin AXimax AxIav clay

A 49 x 14 47.6 0.02 0.12 0.04 1.4

B 99 x 29 21.7 0.01 0.06 0.02 1.2

C 199 x 59 10.3 0.005 0.03 0.01 1.1

D 209 x 59 5.9 0.005 0.03 0.01 1.1

Legend: IL - Points in direction JL - Points in q direction

Re, - Surface mesh Reynolds number Ax - Streamwise spacing (ft)

c - Stretch factor at surface

Subscripts: av - average min - minimum

max - maximum

experimental value. Further, the peak pressure location as well as magnitude are also consider-

ably underpredicted. For Grid 2, once again, no significant differences between the methods are

observed in the pressure coefficent prediction though some improvement is observed of the peak

pressure (underpredicted roughly 22%) as well as the initial pressure rise over that obtained on

Grid 1. In contrast to Grids I and 2 where not much difference is observed between the schemes,

the pressure coefficient on Grid 3 displays significant differences between the methods. The initial

pressure rise occuring at about x1L - 0.6 is best reproduced by the MC method while for the

Roe and van Leer schemes, this rise occurs slightly downstream (x/L ,- 0.75). The location of

the peak pressure is also best captured with the MC method although the magnitude is overpre-

dicted about 12%. On the other hand, the location of the computed peak with the Roe and van

Leer schemes is slightly upstream of the experimental value though the magnitude is correctly

predicted. There is not much difference in the computed pressure coefficients with Grid 4 over

Grid 3 for both the MC and Roe schemes. However, the peak Cp with van Leer's scheme drops

somewhat (3%). All schemes predict the theoretical inviscid pressure rise beyond x/L - 2 on
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every grid.

The heat transfer results are displayed in Fig. 17 (a), (b) and (c) for the MC, van Leer and

Roe schemes, respectively. The ordinate in this figure is the heat transfer coefficient defined as

k (-T') /pouoo (H. - H,) where H is the total enthalpy and the subscript w denotes evaluation

at the wall. The inaccuracies on the coarsest mesh may be predominantly attributed to inadequate

grid resolution which leads to significant truncation error. For Grid 2, both the MC method

and Roe's method display higher peak heat transfer rates while van Leer's method exhibits a

lower peak, each method approaching closer to experimental values relative to Grid 1. On the

finest mesh, once again, the MC method predicts the initial drop (corresponding actually to the

point of separation as evident later) at the correct location while the Roe and van Leer schemes

underpredict upstream influence. On the other hand, the peak value is best predicted with Roe's

scheme (15% overprediction) with the MC method overpredicting the heat transfer coefficient

the most (30% overprediction). In a manner similar to that observed previously for the pressure

coefficient, there is no improvement with Grid 4 over Grid 3. Note that with Roe's scheme, a

small dip is observed at X/L -. 1.25 on Grids 1 and 2, the cause of which is presently unknown.

However, with grid refinement, this anomaly is eliminated.

Fig. 18 compares the prediction of the skin friction coefficient, defined as 2/u (2) /Pu 2

The size of the separated reverse flow region is indicated by the region of negative Cf. This

increases with grid refinement for all methods. On Grids 1 and 2, once again the MC and Roe

schemes yield similar results and van Leer's method overpredicting significantly the peak skin

friction. All methods predict almost negligible separation on Grid 1 indicating a lack of adequate

resolution of the viscous terms. For the denser Grids (3 and 4), the predictions with van Leer

algorithm rapidly approach those with the other two schemes, a trend also observed earlier with

the heat transfer. The MC method predicts the most accurate start of the separation region in

comparison with experimental values. All three methods, however, fail to correctly locate the

trough in skin friction coefficient, most likely due to reattachment, at X/L - 1.25.

Overall, the effect of grid resolution on all methods is to provide better comparison between

theory and experiment as anticipated. For the sake of completeness, the computed Mach contours
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on Grid 4 with each method are presented in Fig. 19. The overall pattern is the same for all

methods and similar to that observed on Grid 3 (not shown). The leading edge shock is captured

accurately but tends to get smeared near the point where it intersects the corner shock. The

resolution of the flow at this point of intersection may be critical for the purposes of accuracy.

It is interesting to note that although van Leer's algorithm performs poorly on the coarse mesh,

significant improvement is obtained with grid refinement sepecially in the prediction of surface

quantities. The salient difference between Meshes 3 and 4 is in the vertical spacing. However,

the horizontal spacing is identical except upstream of the leading edge of the plate where Grid 4

has 10 uniformly spaced points. Clearly the issue of horizontal spacing has not been resolved and

possibly even better comparison may be obtained with each method if the regions around th,

points of separation and reattachment are further resolved.

It may be mentioned that the present results on Grids 3 and 4 agree in an overall sense with the

computations of other researchers. Although precise comparisons are not possible due to different

implementations and mesh details, some differences in trends may be outlined. The CFL3D code

(utilizing Roe's scheme with third order approximation and the thin layer equations for the viscous

terms) has been utilized for the same configuration by Rudy et al. [36] as well as by Rizzetta

et al. [35]. The results of the former indicate surprisingly good agreement with experimental

data on a relatively coarse mesh (51 x 51) though the predictions deteriorate somewhat with

higher grid resolution. Their grid independent results (obtained on a 101 x 101 mesh) exhibits

a larger separation region than that observed experimentally. However, they note that their

time-accurate calculations require about 12rns for steady state to be achieved, 8ms more than

observed experimentally and 2ms more than the total experimental time. Indeed, their best

comparison with experimental results is obtained during the transients (between 2 and 3ms) in

titne-accurate computations. In comparison, with the convergence criteria outlined earlier, the

results displayed on the Mesh 4 represent a minimum flow development time of 9.5ms for van

Leer's scheme the relevant numbers for the MC scheme and Roe's scheme are 19ms and 177s,

respectively. One difference in trends is that the present methods all display pressure and heat

transfer peaks upstream of the experimentally observed location in contrast to those obtained
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Figure 19: Mach contours for compression corner flow on Grid 4
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by Rudy et al. for whom the peaks lie downstream of the experimental locations. The results

of Rizzetta et al. with the CFL3D code indicate a higher sensitivity to vertical grid resolution

than observed in the present research. Results with the Beam-Warming algorithm, the VAPOR

code (based upon the OSW algorithm) and MacCormack explicit predictor corrector algorithm

were also presented by Rizzetta et al.. On a grid identical to that denoted Grid 3 in the present

research, the Beam-Warming and OSW algorithms exhibit significant underprediction in peak

heat transfer while the MacCormack predictor corrector algorithm performs reasonably well. All

the computations mentioned above, as also those reported by Thareja et al. [48] with the adaptive

LAURA algorithm [48] fail to predict the dip in skin friction coefficient at about X/L - 1.25.

The location of separation and reattachment points and extent of separation are compared in

Table 5.2 for several research efforts.

43



Table 5.2: Separation region details for corner flow

Solution Separation Reattachment Total

Algorithm Point Point Extent

Experiment 0.5475-0.7025 1.1278-1.3748 0.5703-0.8273

CFL3D [48] 0.5318 1.3431 0.8113

Thareja et al. [48] 0.5588 1.3493 0.8113

A 0.9813 1.0242 0.0429

MC B 0.8929 1.1100 0.2171

C 0.6516 1.2748 0.6232

D 0.6596 1.2688 0.6092

A - - No sep. detected

vL B 0.9274 1.1244 0.1970

C 0.7703 1.2150 0.4446

D 0.7733 1.2166 0.4432

A 0.9871 1.0173 0.0302

Roe B 0.9033 1.1226 0.2194

C 0.7449 1.2367 0.4917

D 0.7330 1.2381 0.5051
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6. Conclusions

A detailed examination of the performance of several flux-split algorithms is attempted on two

problems representative of complex flowfields. Results are compared with experimentally observed

data. Based upon available results, the following conclusions are made:

" The method of MacCormack and Candler performs accurately for both the blunt body flow

as well as the ramp flow insofar as both surface pressure and heat transfer are concerned.

The overall accuracy is comparable to Roe's flux-difference split scheme and, in the present

numerical framework, is more robust - permits code operation at higher CFL numbers

leading to more rapid convergence.

" van Leer's scheme: This scheme displays a tendency to consistently overpredict heat transfer

indicating perhaps excess diffusion in the boundary layer. However, with grid refinement,

the accuracy of this method rapidly approaches those of the other two.

" Roe's flux difference scheme: This scheme exhibits a tendency toward the development of

anomalous "carbuncle" solutions for blunt body flows. This tendency may be suppressed

by appropriate increase in the eigenvalue cutoff required to enforce the entropy condition.

For the corner flow, the performance of this scheme is comparable to the MC scheme.

Although the MC and Roe schemes exhibit excellent comparison with experimental data, this

result is representative only at the flow parameters considered and may not carry over to other

conditions. Further computations at higher Mach and Reynolds numbers are necessary. For

corner flows, the present results indicate the need for further computations with higher streamwise

resolution.
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Nomenclature
A flux Jacobian of F

B flux Jacobian of G

Btu British Thermal Units

c stretch factor; local speed of sound

C component of Q

C., specific heat at constant volume

CFL Courant- Friedrich- Levy number

e total energy

ei internal energy

f feet

F, F, G, G flux vectors

G.R. global residual

IL, JL points in and r7 direction

J Jacobian, inverse cell volume

L distance from leading edge to corner

M Mach number

MC MacCormack and Candler scheme

n normal direction

nit number of iterations to double CFL

OSW Original Steger Warming scheme

p pressure

psi pounds per square inch

Pr Prandtl number

PR pressure function
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Q matrix diagonalizing A

R gas constant; Rankine

Re Reynolds number

RMSP root mean square surface pressure

RMSQ root mean square surface heat transfer

S Jacobian of V with respect to U

t time

T temperature

u Cartesian velocity in x direction

U, U solution vector

v Cartesian velocity in y direction

VCartesian velocity vector

vL van Leer scheme

V vector of primitive variables

W vector of extrapolated variables

x, y Cartesian coordinates

6 cutoff value; any change

i cutoff parameter

A she-ck standoff distance

V7 gradient operator

^f ratio of specific heats

A eigenvalue

0 partial derivative operator
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p density

0 angle

, 7/ transformed coordinates

Xi pressure switch

Subscripts

j + 1 interface between j and j + 1

V viscous

w wall

00 freestream conditions

Superscripts

L state at left of interface

R state at right of interface

- positive and negative components
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